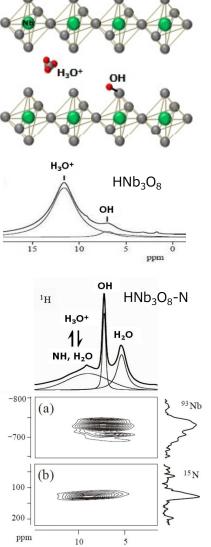

Microstructures of Visible-light-responsive Photocatalyst HNb₃O₈-N Studied by ¹H MAS and ¹H-⁹³Nb/¹H-¹⁵N HETCOR NMR


Much attention has been paid to visible-light-responsive photocatalysts, decomposing carbon dioxide and toxic chemicals under visible-light irradiation. Niobic acid HNb_3O_8 was found to change from ultra-violet-responsive to visible-light-responsive by nitrogen doping. This Note introduces an NMR study clarifying the microstructures of nitrogen-doped niobic acid HNb_3O_8 -N.

In niobic acid HNb_3O_8 , H_3O^+ ions are intercalated between the layers comprising NbO_6 octahedra networks, yielding 1H signals together with OH protons; H_3O^+ : 11.6ppm, OH: 7.0ppm.

In contrast, nitrogen-doped niobic acid HNb_3O_8 -N exhibits three distinct 1H signals. To assist the assignment of the 1H signals, 1H - ^{93}Nb and 1H - ^{15}N HETCOR (HETeronuclear CORrelation) spectra, indicating the proximity of H, Nb, and N atoms, were observed.

As a result, the 1 H signal around 7ppm shows the correlation with 93 Nb, proving that the protons are assigned to OH attaching to NbO₆. On the other hand, the 1 H signal around 9ppm shows the correlation with 15 N. One probable model for the microstructures is that NH (0-2ppm), H₂O (5.3ppm), and H₃O⁺ (11.6ppm) exchange as shown below.

Ref: T. Shimizu, T. Nakai, K. Deguchi, K. Yamada, B. Yue, and J. Ye, Chem. Lett., 43, 80-82 (2014).

http://www.jeol.co.jp http://j-resonance.com Copyright © 2014 JEOL RESONANCE Inc.

