

A flip angle β smaller than 90 degree is often applied in the single-pulse measurements for long \mathcal{T}_1 samples to accumulate the signals with a short recycle delay RD. Signal sensitivity per scan as a function of β shown below indicates maxima with smaller flip angles β_{opt} when \mathcal{T}_1 becomes longer than RD, or when x=RD/ \mathcal{T}_1 becomes smaller. The angle β_{opt} is called Ernst angle and given by cos $\beta_{opt} = \exp(-RD/\mathcal{T}_1)$ [1,2].

Some combinations of RD and β_{opt} to be set in the experiments are summarized below:

RD/ <i>T</i> 1	β _{opt}	
0.01	8.1°	
0.02	11.4°	
0.035	15°	
0.05	18.0°	
0.1	25.2°	
0.14	30°	
0.2	35.0°	
0.35	45°	
0.5	52.7°	
0.69	60°	
1	68.4°	
2	82.2°	
5	89.6°	

As shown left, measurements with an appropriate combination of RD and β_{opt} may maximize the signal sensitivity per hour [3].

- References: 1. R. R. Ernst, G. Bodenhausen, and A. Wokaun, "Principles of Nuclear Magnetic Resonance in One and Two Dimensions", Clarendon Press, 1987, pp124-125.
 - 2. T. D. W. Claridge, "High-Resolution NMR Techniques in Organic Chemistry", Second Ed., Elsevier, 2009, pp99-102.
 - 3. T. Nakai, New Glass, 28(2), 17-28 (2013).

http://www.jeol.co.jp http://j-resonance.com Copyright © 2014 JEOL RESONANCE Inc.

