

 ${}^{13}C$ - ${}^{1}H$ dipolar interaction v_{CH} , *ca* 20kHz, can be averaged out by ${}^{1}H$ - ${}^{13}C$ heteronuclear decoupling v_1 , whether 80kHz or 120kHz. However, for most organic solid samples, "the third nucleus" of ${}^{1}H$ in addition to ${}^{13}C$ and ${}^{1}H$ lowers ${}^{13}C$ spectral resolution.

 CH_2 as a three-spin model system involves not only two ${}^{13}C{}^{-1}H$ dipolar interactions of $v_{CH}=2O$ kHz but also ${}^{1}H{}^{-1}H$ dipolar interaction of $v_{HH}=2O$ kHz. ${}^{1}H{}^{-1}H$ dipolar interaction cannot perfectly be eliminated using multiple pulse techniques and lowers ${}^{13}C$ spectral resolution through high-order perturbation cross terms with ${}^{1}H$ chemical shift anisotropy. On the contrary, ${}^{1}H{}^{-1}H$ dipolar interaction left without manipulation would be removed via "self-decoupling" phenomena, but MAS prevents such self-decoupling. TPPM decoupling may recouple MAS-reduced ${}^{1}H{}^{-1}H$ dipolar interaction, thereby improving ${}^{13}C$ spectral resolution via self-decoupling. Reference: P. Hodgkinson, Prog. NMR Spect., <u>46</u>, 197-222 (2005).

http://www.jeol.co.jp http://j-resonance.com Copyright © 2014 JEOL RESONANCE Inc.

