

http://www.jeol.co.jp

Copyright © 2011 JEOL RESONANCE Inc.

A TFH probe enables "¹⁹F observation under ¹H decoupling" and "¹H observation under ¹⁹F decoupling" by executing time-shared decoupling. Examples of decoupling at a single offset are shown below.

¹H (left) and ¹⁹F (right) spectra of 1,1,1,3,3,3-hexafluoro-2-propanol. ¹⁹F decoupling simplifies the ¹H splittings, and ¹H decoupling removes the ¹⁹F splitting.

NMR spectra of fluorine-containing organic compounds are often complicated because of ¹H-¹⁹F couplings, which are generally large and so effective in the long range. ¹H signals around 4.7 ppm (left) split in a complicated way due to couplings with multiple ¹⁹F nuclei. A TFH probe, however, can simplify the spectrum by simultaneous irradiation at several ¹⁹F offsets. This technique is useful in measurements and analyses of fluorinecontaining organic comounds.

¹⁹F decoupled ¹H spectra of 1,1,2,3,3,3-hexafluoropropyl-ethyl-ether. Time-shared composite pulse decoupling at two different offsets realizes complete decoupling for ¹⁹F nuclei.

http://www.jeol.co.jp

 $\operatorname{Copyright} @\ 2011 \ JEOL \ RESONANCE \ Inc.$

🔊 JEOL RESONANCE