Multiple-site decoupling method

In most cases, ¹⁹F decoupling is not completely achieved (Fig. 2) because of wide chemical shifts of ¹⁹F (Fig. 1). ECA series, employing multiple sequencer system, can assign more than one RF source to a single channel. Thereby, simultaneous irradiation from several RF sources having various offsets can effectively decouple entire regions. Also, each decoupling range can be limited, and so heating problem is easily avoided (Figs. 3 and 4). For example, in the case of CF₃CHFCF₂OCH₂CH₃, giving ¹⁹F signals around -80ppm and -212ppm (Fig. 1), simultaneous decoupling at these regions yield a ¹³C{¹H, ¹⁹F} spectrum where couplings with ¹⁹F are completely decoupled (Fig. 5). Thus, multiple-site decoupling is useful for many fluorine-containing samples, where ¹⁹F signals appear in separate regions.

