MQMAS spectra dependent on static magnetic fields B₀ and RF fields B₁ Recent developments of high magnetic fields and high-quality probes permit easy measurements of half-integer quadrupolar nuclei, especially in MQMAS experiments. Sensitivity of MQMAS spectra is governed by - (1) Quadrupolar coupling constant CQ, - (2) Static magnetic field strength B₀, - (3) RF magnetic field strength B₁. In this Note, we treat three compounds, RbNO₃, Na₄P₂O₇, and Na₂HPO₄, having maximum C_Q of 1.94, 3.22, and 3.70 MHz, respectively. Since quadrupolar broadenings are proportional to $C_Q^2/\gamma B_0$, signal sensitivities are estimated as follows: | | RbNO ₃ | Na ₄ P ₂ O ₇ | Na ₂ HPO ₄ | |--------|-------------------|---|----------------------------------| | 21.9 T | 37.6 | 10.9 | 8.28 | | 14.1 T | 12.5 | 3.64 | 2.76 | | 9.4 T | 4.54 | 1.32 | 1 | Clearly from the above table, high magnetic fields are very effective in achieving high sensitivity. The effects of RF fields B_1 on signal sensitivities are demonstrated experimentally, using MQMAS probe (B_1 =150-250 kHz) and standard CPMAS probe (B_1 =50-150 kHz) at B_0 =14.1 T, in the following: Strong RF fields excite MQMAS signals efficiently, leading to high sensitivity. ^{*} Experiments at B_0 =21.9 T were conducted with cooperation of Dr. T. Shimizu of National Institute of Materials Science (NIMS). http://www.jeol.co.jp Copyright © 2011 JEOL RESONANCE Inc. http://www.jeol.co.jp Copyright © 2011 JEOL RESONANCE Inc. http://www.jeol.co.jp Copyright @ 2011 JEOL RESONANCE Inc.