MQMAS spectra dependent on static magnetic fields B₀ and RF fields B₁

Recent developments of high magnetic fields and high-quality probes permit easy measurements of half-integer quadrupolar nuclei, especially in MQMAS experiments.

Sensitivity of MQMAS spectra is governed by

- (1) Quadrupolar coupling constant CQ,
- (2) Static magnetic field strength B₀,
- (3) RF magnetic field strength B₁.

In this Note, we treat three compounds, RbNO₃, Na₄P₂O₇, and Na₂HPO₄, having maximum C_Q of 1.94, 3.22, and 3.70 MHz, respectively. Since quadrupolar broadenings are proportional to $C_Q^2/\gamma B_0$, signal sensitivities are estimated as follows:

	RbNO ₃	Na ₄ P ₂ O ₇	Na ₂ HPO ₄
21.9 T	37.6	10.9	8.28
14.1 T	12.5	3.64	2.76
9.4 T	4.54	1.32	1

Clearly from the above table, high magnetic fields are very effective in achieving high sensitivity.

The effects of RF fields B_1 on signal sensitivities are demonstrated experimentally, using MQMAS probe (B_1 =150-250 kHz) and standard CPMAS probe (B_1 =50-150 kHz) at B_0 =14.1 T, in the following: Strong RF fields excite MQMAS signals efficiently, leading to high sensitivity.

^{*} Experiments at B_0 =21.9 T were conducted with cooperation of Dr. T. Shimizu of National Institute of Materials Science (NIMS).

http://www.jeol.co.jp

Copyright © 2011 JEOL RESONANCE Inc.

http://www.jeol.co.jp

Copyright © 2011 JEOL RESONANCE Inc.

http://www.jeol.co.jp

Copyright @ 2011 JEOL RESONANCE Inc.

